12.05.2021 Пригласительный школьный этап ВОШ по математике 3-6 класс задания и ответы
1)Вася на следующий день после своего дня рождения сказал: «Жаль, что мой день рождения в этом году не в субботу, ведь в этом случае ко мне бы пришло больше гостей! Но суббота будет послезавтра…» В какой день недели у Васи был день рождения?
2)Кубик повернули вокруг указанной оси так, что отмеченная грань повернулась указанным образом. А в вершину с каким номером перешла точка A?
3)Несколько букв А и несколько букв Б сидели на трубе. После того, как несколько А упало и несколько Б пропало, на трубе остались всего три буквы и между ними произошёл следующий диалог: Первая буква: «Буква Б среди нас одна.» Вторая буква: «Я здесь одна такая буква.» Третья буква: «Букв А тут точно меньше двух.» Оказалось, что каждая буква сказала правду, если она А, и соврала, если она Б. Определите, где какая буква.
4)Замените картинки на цифры так, чтобы суммы по столбцам и по строкам были равны указанным. Одинаковые картинки соответствуют одинаковым цифрам, а разные — разным. Какое число после замены картинок на цифры получится под таблицей?
5)Ваня написал на доске число 1347 . — Смотри! — заметил Петя. — В этом числе каждая из двух последних цифр равна сумме двух предыдущих. — Точно! — согласился Вася. — А сможешь написать самое большое четырёхзначное такое число? Помогите Васе справиться с Петиным заданием.
6)Петя умеет рисовать всего 4 вещи: солнце, мячик, помидор и банан. Зато крайне правдоподобно! Сегодня он нарисовал несколько вещей, среди которых ровно 19 жёлтых, 22 круглых и 17 съедобных. Какое наибольшее количество мячиков он мог нарисовать? Петя считает, что все помидоры круглые и красные, все мячики круглые и могут быть любого цвета, а все бананы жёлтые и не круглые.
7)Катя коротает время, пока родители работают. На листке бумаги она задумчиво в два ряда нарисовала Чебурашек (в каждом ряду оказался нарисован хотя бы один Чебурашка). Потом, подумав, между каждыми двумя соседними Чебурашками в ряду она нарисовала по крокодилу Гене. А затем слева от каждого Чебурашки — по старухе Шапокляк. И напоследок между каждыми двумя персонажами в ряду она нарисовала по Кракозябре. Внимательно посмотрев на рисунок, она поняла, что красиво получились у неё только Кракозябры, и яростно стёрла всех остальных. В итоге родители увидели два ряда Кракозябр: всего 29 штук. Сколько Чебурашек было стёрто?
8)У берега реки покачивался небольшой плот. К берегу подошли 5 мышат весом по 60 г, 3 крота весом по 90 г и 4 хомячка весом по 120 г. Какое минимальное количество граммов должен выдерживать плот, чтобы все звери смогли на нём переправиться на другой берег, возможно, за несколько ходок «туда сюда»? Плот не может передвигаться по реке без гребца.
Видеоразбор заданий олимпиады для 3 класса:
Пригласительный этап ВОШ 2021 по математике 4 класс задания:
1)Поставьте в соответствие каждой букве цифру 1,2,3,4,5 так, чтобы выполнялись все неравенства. К < Н < И < Ж > К > А Разным буквам должны соответствовать разные цифры. В качестве ответа запишите число КНИЖКА.
2)Вторник будет через пять дней после позавчера. А какой день недели будет завтра?
3)Сколько на данной картинке существует прямоугольников со сторонами, идущими по линиям сетки? (Квадрат также является прямоугольником.)
4)Четыре девочки: Катя, Оля, Лиза и Рита — встали в круг в некотором порядке. На них были платья разных цветов: розовое, зелёное, жёлтое и голубое. Известно, что: на Оле было не розовое и не голубое платье; девочка в зелёном платье стоит между Ритой и девочкой в жёлтом; Катя не в зелёном и не в голубом платье; Лиза стоит между Катей и девочкой в розовом платье. Кто во что одет?
5)Напишите наибольшее девятизначное число, в котором встречаются все чётные цифры. (Чётные цифры: 0,2,4,6,8.)
6)Часть цифр в прямоугольнике уже расставлена. Расставьте на оставшихся местах цифры так, чтобы: сумма цифр в каждом столбце была одинаковой; сумма цифр в каждой строчке была одинаковой; сумма цифр в красных клетках была равна сумме цифр в любой строчке. В качестве ответа введите трёхзначное число ABC (т. е. составленное из цифр, оказавшихся на местах букв A, B, C).
7)У берега реки стоит Белоснежка, а рядом с ней 7 гномов в следующем порядке слева направо: Весельчак, Соня, Умник, Чихун, Ворчун, Скромник и Простачок. У берега качается лодка, вмещающая только 3 гномов и Белоснежку. Белоснежка единственная умеет грести. Любые два гнома, стоящие рядом в изначальном ряду, поссорятся без присмотра Белоснежки. Белоснежка должна перевезти всех гномов на другой берег и никого не поссорить. Отметьте всех, кого Белоснежка возьмёт с собой в последнюю поездку.
8)Если в числе 79777 зачеркнуть цифру 9, получится число 7777. Сколько существует различных пятизначных чисел, из которых можно получить 7777, зачеркнув одну цифру?
Видеоразбор заданий олимпиады для 4 класса:
Пригласительный этап ВОШ 2021 по математике 5 класс задания:
1)Саша выписал на доску все двузначные числа, делящиеся на 6, а затем стёр те из них, которые оканчиваются не на 4. Какое наибольшее число в итоге оказалось написано на доске?
2)На столе лежат апельсин, банан, мандарин, персик и яблоко. Их веса равны 100 г, 150 г, 170 г, 200 г, 280 г, но неизвестно, какой фрукт сколько весит. Известно, что: персик легче апельсина; мандарин тяжелее банана, но легче персика; яблоко легче мандарина; банан и мандарин вместе тяжелее апельсина. Какой фрукт сколько весит?
3)На стене висят часы с кукушкой. Когда начинается новый час, кукушка говорит «ку-ку» количество раз, равное числу, на которое показывает часовая стрелка (например, в 19:00 «ку-ку» звучит 7 раз). Как-то утром Максим подошёл к часам, когда на них было 9:05. Он стал крутить пальцем минутную стрелку, пока не перевёл часы на 7 часов вперёд. Сколько раз за это время прозвучало «ку-ку»?
4)На дискотеку по случаю окончания учебного года пришло в два раза больше мальчиков, чем девочек. Маша посчитала, что девочек, кроме неё самой, на дискотеке на 9 меньше, чем мальчиков. Сколько мальчиков пришло на дискотеку?
5)Из клетчатого квадрата 7×7 вырезали голубые треугольники. Чему равна площадь оставшейся фигуры? Длина стороны каждой клетки равна 1 см. Ответ дайте в квадратных сантиметрах.
6)На доске написано одно трёхзначное число и два двузначных. Сумма чисел, в записи которых есть семёрка, равна 214. А сумма чисел, в записи которых есть тройка, равна 75. Найдите сумму всех трёх чисел.
7)Вася хочет расставить в квадратики числа от 1 до 6 (каждое — по одному разу) так, чтобы выполнялось следующее условие: если два квадратика соединены, то в том, который выше, число больше. Сколько существует способов это сделать?
8)В стране 100 городов: 30 из них находятся в горной части страны, а 70 — в равнинной. В течение трёх лет между городами устанавливали авиасообщение. Каждый год в стране открывалось 50 новых авиарейсов: все города случайным образом разбивались на 50 пар, и между городами из одной пары открывался рейс. Через три года оказалось, что из 150 открытых рейсов ровно 23 соединяют пару «горных» городов. Сколько рейсов соединяют пару «равнинных» городов?
Видеоразбор заданий олимпиады для 5 класса:
Пригласительный этап ВОШ 2021 по математике 6 класс задания:
1)Маша расставила числа от 1 до 16 в клетки таблицы 4×4 так, чтобы любые два числа, отличающиеся на единицу, стояли в соседних по стороне клетках. А Саша стёр все числа, кроме 1 , 4, 9 и 16. Какое число стояло в клетке с вопросом?
2)Для приготовления одной порции салата требуются 2 огурца, 2 помидора, 75 грамм брынзы и 1 перец. На складе ресторана есть 92 перца, 6,6 кг брынзы, 180 помидоров и 181 огурец. Сколько порций получится?
3)Витя и его мама одновременно вышли из дома и пошли в противоположные стороны с одинаковой скоростью: Витя — в школу, а мама — на работу. Через 16 минут Витя понял, что у него нет ключей от дома, а вернётся из школы он раньше мамы, поэтому он стал догонять её, увеличив скорость в пять раз. Через сколько минут с того момента, как он понял, что надо забрать ключи, Витя догонит маму?
4)Алексей, Борис, Вениамин и Григорий подозреваются в ограблении банка. Полиции удалось выяснить следующее: если Алексей невиновен, то Вениамин виновен, а Борис невиновен; если Григорий виновен, то Борис и Вениамин невиновны; если Алексей виновен, то Вениамин тоже виновен; если Вениамин виновен, то кто-то из двух — Борис и Григорий — точно виновен. Отметьте тех, кто участвовал в ограблении.
5)В парке проложены дорожки, как показано на рисунке. Двое рабочих начали их асфальтировать, одновременно стартовав из точки A. Они укладывают асфальт с постоянными скоростями: первый — на участке A−B−C, второй — на участке A−D−E−F−C. В итоге они закончили работу одновременно, потратив на неё 15 часов. Известно, что второй работает в 1,2 раза быстрее первого. Сколько минут второй укладывал асфальт на участке DE ?
6)С дерева сорвали несколько апельсинов (не обязательно равной массы). Когда их взвесили, то оказалось, что масса любых трёх апельсинов, взятых вместе, составляет меньше 4% от суммарной массы остальных апельсинов. Какое наименьшее количество апельсинов могло быть сорвано?
7)Петя загадывает четырёхзначное число вида 19∗∗ . Вася последовательно проверяет, делится ли загаданное Петей число на 1,3,5,7,9,11 , и если делится, то Вася платит Пете 1,3,5,7,9 или 11 рублей соответственно. Например, за число 1900 Вася заплатил бы Пете 1+5=6 рублей. Какое наибольшее количество рублей может получить Петя?
8)Существует ровно 120 способов закрасить пять клеток в таблице 5×5 так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка. Существует ровно 96 способов закрасить пять клеток в таблице 5×5 без угловой клетки так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка. Сколько существует способов закрасить пять клеток в таблице 5×5 без двух угловых клеток так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка?
Источник
Эту головоломку не могут решить 70% людей, а остальные легко разгадают её за 34 секунды
Британская компания создала головоломку, которую нужно разгадать за ограниченное время — полминуты, пишет Daily Mail. С заданием смогли справиться менее 30% опрошенных, а у остальных возникли сложности не только со скоростью, но и в целом с поиском ответа. Интересно, в какой категории вы окажетесь? Пройдите тест и узнайте!
Среди такого многообразия подушек нужно найти всего одну — круглую и бирюзовую в горошек
В этом шоуруме глаза разбегаются в разные стороны, но сконцентрируйтесь на зелёной настольной лампе
Вы попали в матрицу, но таблетки выбирать не нужно — просто найдите перевёрнутую единицу
Фото © Reflect Digital
Все мишки здесь одеты по последней моде, и только один отказался от галстука-бабочки. Какой?
Фото © Perpetual Fostering
И нестареющая классика — найдите 10 отличий на этой атмосферной осенней головоломке
Готовы проверить себя? Разумеется, вы всё нашли и уложились в 34 секунды, а сюда заглянули, просто чтобы удостовериться
Фото © ScS, Reflect Digital, Perpetual Fostering
Согласитесь, было несложно? И даже коварные листья не смогли вас отвлечь!
Источник
Калькулятор дробей
Если вам необходимо произвести математические операции с дробями воспользуйтесь нашим онлайн калькулятором:
Просто заполните необходимые поля и получите ответ и подробное решение.
Данный калькулятор может работать как с положительными, так и с отрицательными дробями.
При этом нужно помнить, что:
− a c = a − c = − a c
Всегда нужно использовать только последний вариант.
Сложение дробей
С одинаковыми знаменателями
При сложении дробей с одинаковыми знаменателями складываются только числители, а знаменатель остаётся прежним.
Формула
Пример
Для примера сложим следующие дроби с равными знаменателями:
2 7 + 4 7 = 2 + 4 7 = 6 7
С разными знаменателями
При сложении дробей с разными знаменателями для начала необходимо привести дроби к общему знаменателю. А затем сложить числители.
Формула (универсальная)
Пример №1
Для примера сложим следующие дроби с разными знаменателями:
1 2 + 1 3 = 1⋅3 2⋅3 + 1⋅2 3⋅2 = 3 6 + 2 6 = 3+2 6 = 5 6
Пример №2
Существуют также частные случаи, когда знаменатель одной дроби можно привести к знаменателю второй. Например:
1 2 + 1 4 = 1⋅2 2⋅2 + 1 4 = 2 4 + 1 4 = 2+1 4 = 3 4
Этот же пример можно решить и применяя вышеуказанную универсальную формулу:
1 2 + 1 4 = 1⋅4 2⋅4 + 1⋅2 4⋅2 = 4 8 + 2 8 = 4+2 8 = 6 8 = 3 4
Обратите внимание, что мы сократили дробь:
6 8 = 3 ⋅ 2 4 ⋅ 2 = 3 4
Сложение смешанных чисел
Преобразуя в неправильную дробь
Для начала смешанное число (дробь) нужно преобразовать в неправильную дробь, а потом можно складывать как в предыдущих примерах.
Формула
Пример
Для примера сложим два смешанных числа:
3 1 2 + 1 2 3 = 1+3⋅2 2 + 2+1⋅3 3 = 7 2 + 5 3 = 7⋅3 2⋅3 + 5⋅2 3⋅2 = 21 6 + 10 6 = 21+10 6 = 31 6 = 5⋅6+1 6 = 5⋅6
6 + 1 6 = 5 1 6
Обратите внимание, что из полученной неправильной дроби мы выделили целую часть:
31 6 = 5⋅6+1 6 = 5⋅6
6 + 1 6 = 5 1 6
Складывая целую и дробную части отдельно
Целую и дробную части смешанных чисел можно складывать по отдельности.
Формула
Пример
Решим предыдущий пример этим способом:
3 1 2 + 1 2 3 = (3 + 1) + ( 1 2 + 2 3 ) = 4 + 1⋅3 2⋅3 + 2⋅2 3⋅2 = 4 + 3 6 + 4 6 = 4 + 3+4 6 = 4 + 7 6 = 4 + 1 1 6 = 5 1 6
Вычитание дробей
С одинаковыми знаменателями
Формула
Пример
Для примера вычтем одну дробь из другой с равными знаменателями:
3 5 − 2 5 = 3−2 5 = 1 5
С разными знаменателями
Тут также, как и при сложении, дроби нужно подвести под общий знаменатель, а затем вычитать.
Формула
Пример
Для примера вычтем одну дробь из другой, с разными знаменателями:
3 4 − 1 3 = 3⋅3 4⋅3 − 1⋅4 3⋅4 = 9 12 − 4 12 = 9−4 12 = 5 12
Вычитание смешанных чисел
Для начала смешанные числа преобразуем в неправильные дроби, потом приводим полученные дроби к общему знаменателю, а затем вычтем одну из другой. Далее выделяем целую часть если она есть.
Формула
Пример
Умножение дробей
При умножении дробей неважно одинаковые или разные у них знаменатели. Числитель одной дроби умножается на числитель другой, а знаменатели тоже перемножаются между собой.
Формула
Давайте рассмотрим несколько примеров:
Пример №1
Умножим дроби с одинаковыми знаменателями:
1 3 ⋅ 2 3 = 1⋅2 3⋅3 = 2 9
Пример №2
Умножим дроби с разными знаменателями:
1 3 ⋅ 2 4 = 1⋅2 3⋅4 = 2 12 = 1⋅2 6⋅2 = 1 6
Пример №3
Умножим смешанные числа:
1 1 2 ⋅ 2 2 3 = 1+1⋅2 2 ⋅ 2+2⋅3 3 = 3 2 ⋅ 8 3 = 3⋅8 2⋅3 = 24 6 = 4
Деление дробей
При делении одной дроби на другую также неважно одинаковые или разные у них знаменатели. Чтобы разделить одну дробь на другую нужно перемножить числитель первой дроби и знаменатель второй, а знаменатель первой умножить на числитель второй.
Формула
Давайте рассмотрим несколько примеров:
Пример №1
Разделим одну дробь на другую с таким же знаменателем:
2 3 : 1 3 = 2 3 ⋅ 3 1 = 2⋅3 3⋅1 = 6 3 = 2
Пример №2
Делим дроби с разными знаменателями:
1 2 : 2 3 = 1 2 ⋅ 3 2 = 1⋅3 2⋅2 = 3 4
Пример №3
Деление смешанных чисел:
4 1 2 : 2 2 3 = 1+4⋅2 2 : 2+2⋅3 3 = 9 2 : 8 3 = 9 2 ⋅ 3 8 = 9⋅3 2⋅8 = 27 16 = 1⋅16+11 16 = 1⋅16
16 + 11 16 = 1 11 16
Источник
Занимательная математика: правило Гаусса
Цикл «Занимательная математика» посвящен деткам увлекающимся математикой и родителям, которые уделяют время развитию своих детей, «подкидывая» им интересные и занимательные задачки, головоломки.
Первая статья из этого цикла посвящена правилу Гаусса.
Немного истории
Известный немецкий математик Карл Фридрих Гаусс (1777-1855) с раннего детства отличался от своих сверстников. Несмотря на то, что он был из небогатой семьи, он достаточно рано научился читать, писать, считать. В его биографии есть даже упоминание того, что в возрасте 4-5 лет он смог скорректировать ошибку в неверных подсчетах отца, просто наблюдая за ним.
Одно из первых его открытий было сделано в возрасте 6 лет на уроке математики. Учителю было необходимо увлечь детей на продолжительное время и он предложил следующую задачку:
Найти сумму всех натуральных чисел от 1 до 100.
Юный Гаусс справился с этим заданием достаточно быстро, найдя интересную закономерность, которая получила большое распространение и применяется по сей день при устном счете.
Давайте попробуем решить эту задачку устно. Но для начала возьмем числа от 1 до 10:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
Посмотрите внимательно на эту сумму и попробуйте догадаться, что же необычного смог разглядеть Гаусс? Для ответа необходимо хорошо представлять себе состав чисел.
Гаусс сгруппировал числа следующим образом:
(1+10) + (2+9) + (3+8) + (4+7) + (5+6)
Таким образом маленький Карл получил 5 пар чисел, каждая из которых в отдельности в сумме дает 11. Тогда, чтобы вычислить сумму натуральных чисел от 1 до 10 необходимо
Вернемся к первоначальной задаче. Гаусс заметил, что перед суммированием необходимо группировать числа в пары и тем самым изобрел алгоритм, благодаря которому можно быстро сложить числа от 1 до100:
1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100
Находим количество пар в ряде натуральных чисел. В данном случае их 50.
Суммируем первое и последнее числа данного ряда. В нашем примере — это 1 и 100. Получаем 101.
Умножаем полученную сумму первого и последнего члена ряда на количество пар этого ряда. Получаем 101 * 50 = 5050
Следовательно, сумма натуральных чисел от 1 до 100 равна 5050.
Задачи на использование правила Гаусса
А сейчас вашему вниманию предлагаются задачи, в которых в той или иной степени используется правило Гаусса. Эти задачки вполне способен понять и решить четвероклассник.
Можно дать возможность ребенку порассуждать самому, чтобы он сам «изобрел» это правило. А можно разобрать вместе и посмотреть как он сможет его применить. Среди ниже приведенных задач есть примеры, в которых нужно понять как модифицировать правило Гаусса, чтобы его применить к данной последовательности.
В любом случае, чтобы ребенок мог оперировать этим в своих вычислениях необходимо понимание алгоритма Гаусса, то есть умение разбить правильно по парам и посчитать.
Важно! Если будет заучена формула без понимания, то это очень быстро будет забыто.
Задача 1
Найти сумму чисел:
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10;
- 1 + 2 + 3 + … + 14 + 15 + 16;
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;
- 1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100.
Вначале можно дать возможность ребенку самому решить первый пример и предложить найти способ, при котором это сделать легко в уме. Далее разобрать этот пример вместе с ребенком и показать как это сделал Гаусс. Лучше всего для наглядности записать ряд и соединить линиями пары чисел, дающие в сумме одинаковое число. Важно, чтобы ребенок понял как образуются пары — берем самое маленькое и самое большое из оставшихся чисел при условии, что количество чисел в ряду четно.
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = (1 + 10) + (2 + 9) + (3 + 8) + (4 + 7) + (5 + 6) = (1 + 10) * 5;
- 1 + 2 + 3 + … + 14 + 15 + 16 = (1 + 16) + (2 + 15) + (3 + 14) + (4 + 13) + (5 + 12) + (6 + 11) + (7 + 10) + (8 + 9) = (1 + 16) * 8 = 136;
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1 + 8) + (2 + 7) + (3 + 6) + (4 + 5) + 9 = (1+ 8) * 4 + 9 = 45;
- 1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100 = (1 + 100) * 50 = 5050
Задача 2
Имеется 9 гирь весом 1г, 2г, 3г, 4г, 5г, 6г, 7г, 8г, 9г. Можно ли разложить эти гири на три кучки с равным весом?
С помощью правила Гаусса находим сумму всех весов:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1 + 8) * 4 + 9 = 45 (г)
Далее смотрим, можно ли этот вес разбить на три равных веса:
Значит, если мы сможем сгруппировать гири так, чтобы в каждой кучке были гири суммарным весом 15г, то задача решена.
Один из вариантов:
- 9г, 6г
- 8г, 7г
- 5г, 4г, 3г, 2г, 1г
Другие возможные варианты найдите сами с ребенком.
Обратите внимание ребенка на то, что когда решаются подобные задачи лучше всегда начинать группировать с большего веса (числа).
Задача 3
Можно ли разделить циферблат часов прямой линией на две части так, чтобы суммы чисел в каждой части были равны?
Для начала к ряду чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 применим правило Гаусса: найдем сумму и посмотрим, делится ли она на 2:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = (1 + 12) * 6 = 78
Значит разделить можно. Теперь посмотрим как.
По правилу Гаусса у нас получается 6 пар чисел, каждая из которых в сумме дает 13:
1 и 12, 2 и 11, 3 и 10, 4 и 9, 5 и 8, 6 и 7.
Следовательно, надо провести линию на циферблате так, чтобы 3 пары попали в одну половину, а три в другую.
Ответ: линия пройдет между числами 3 и 4, а затем между числами 9 и 10.
Задача 4
Можно ли провести на циферблате часов две прямые линией так, чтобы в каждой части сумма чисел была одинаковой?
Для начала к ряду чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 применим правило Гаусса: найдем сумму и посмотрим делиться ли она на 3:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = (1 + 12) * 6 = 78
78 делиться на 3 без остатка, значит разделить можно. Теперь посмотрим как.
По правилу Гаусса у нас получается 6 пар чисел, каждая из которых в сумме дает 13:
1 и 12, 2 и 11, 3 и 10, 4 и 9, 5 и 8, 6 и 7.
Следовательно, надо провести линии на циферблате так, чтобы в каждую часть попали по 2 пары.
Ответ: первая линия пройдет между числами 2 и 3, а затем между числами 10 и 11; вторая линия — между числами 4 и 5, а затем между 8 и 9.
Задача 5
Летит стая птиц. Впереди одна птица (вожак), за ней две, потом три, четыре и т. д. Сколько птиц в стае, если в последнем ряду их 20?
Получаем, что нам необходимо сложить числа от 1 до 20. А к вычислению такой суммы можно применить правило Гаусса:
1 + 2 + 3 + 4 + 5 + … + 15 + 16 + 17 + 18 + 19 + 20 = (20 + 1) * 10 = 210.
Задача 6
Как рассадить 45 кроликов в 9 клеток так, чтобы во всех клетках было разное количество кроликов?
Если ребенок решил и с пониманием разобрал примеры из задания 1, то тут же вспоминается, что 45 это сумма чисел от 1 до 9. Следовательно, сажаем кроликов так:
- первая клетка — 1,
- вторая — 2,
- третья — 3,
- …
- восьмая — 8,
- девятая — 9.
Но если ребенок сразу не может сообразить, то попробуйте натолкнуть его на мысль о том, что подобные задачи можно решить перебором и надо начинать с минимального числа.
Задача 7
Вычислить сумму, используя прием Гаусса:
- 31 + 32 + 33 + … + 40;
- 5 + 10 + 15 + 20 + … + 100;
- 91 + 81 + … + 21 + 11 + 1;
- 1 + 2 + 3 + 4 + … + 18 + 19 + 20;
- 1 + 2 + 3 + 4 + 5 + 6;
- 4 + 6 + 8 + 10 + 12 + 14;
- 4 + 6 + 8 + 10 + 12;
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11.
- 31 + 32 + 33 + … + 40 = (31 + 40) * 5 = 355;
- 5 + 10 + 15 + 20 + … + 100 = (5 + 100) * 10 = 1050;
- 91 + 81 + … + 21 + 11 + 1 = (91 + 1) * 5 = 460;
- 1 + 2 + 3 + 4 + … + 18 + 19 + 20 = (1 + 20) * 10 =210;
- 1 + 2 + 3 + 4 + 5 + 6 = (1 + 6) * 3 = 21;
- 4 + 6 + 8 + 10 + 12 + 14 = (4 + 14) * 3 = 54;
- 4 + 6 + 8 + 10 + 12 = (4 + 10) * 2 + 12 = 40;
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = (1 + 10) * 5 + 11 = 66.
Задача 8
Имеется набор из 12 гирек массой 1г, 2г, 3г, 4г, 5г, 6г, 7г, 8г, 9г, 10г, 11г, 12г. Из набора убрали 4 гирьки, общая масса которых равна трети общей массы всего набора гирек. Можно ли оставшиеся гирьки расположить на двух чашках весов по 4 штуки на каждой чашке так, чтобы они оказались в равновесии?
Применяем правило Гаусса, чтобы найти общую массу гирек:
1 + 2 + 3 + … + 10 + 11 + 12 = (1 + 12) * 6 = 78 (г)
Вычисляем массу гирек, которые убрали:
Следовательно, оставшиеся гирьки (общей массой 78-26 = 52г) надо расположить по 26 г на каждую чашу весов, чтобы они оказались в равновесии.
Нам не известно какие гирьки были убраны, значит мы должны рассмотреть все возможные варианты.
Применяя правило Гаусса можно разбить гирьки на 6 пар с равным весом (по 13г):
1г и 12г, 2г и 11г, 3г и 10, 4г и 9г, 5г и 8г, 6г и 7г.
Тогда лучший вариант, когда при убирании 4 гирек уберутся две пары из приведенных выше. В этом случае у нас останутся 4 пары: 2 пары на одну чашу весов и 2 пары на другую.
Худший вариант — это когда 4 убранные гирьки разобьют 4 пары. У нас останутся 2 неразбитые пары общим весом 26г, значит их помещаем на одну чашу весов, а оставшиеся гирьки можно поместить на другую чашу весов и они тоже будут 26г.
Источник
Математика 2 класс учебник 2 часть ответы стр 42
Каждое следующее выражение больше предыдущего на 10. Самый лёгкий способ вычислить значения всех остальных выражений: значение каждого следующего равно значению предыдущего, увеличенного на 10.
Каждое следующее выражение меньше предыдущего на 3. Самый лёгкий способ вычислить значения всех остальных выражений: значение каждого следующего равно значению предыдущего, уменьшенного на 3.
Каждое следующее выражение меньше предыдущего на 10. Самый лёгкий способ вычислить значения всех остальных выражений: значение каждого следующего равно значению предыдущего, уменьшенного на 10.
Запиши выражения и вычисли их значения.
1) Из числа 86 вычесть сумму чисел 42 и 4.
2) К разности чисел 54 и 20 прибавить 60.
1) 86 – (42 + 2) = 86 – 44 = 42
2) (54 – 20) + 60 = 34 + 60 = 94
Какие однозначные числа можно записать в окошки, чтобы равенства были верными?
Запиши все возможные равенства.
Все возможные равенства:
Все возможные равенства:
В автобусном парке было 78 автобусов. Сначала на маршруты вышло 30 автобусов, а потом ещё 40. Сколько автобусов осталось в парке?
Было – 78 автобусов
Уехало сначала – 30 автобусов
Потом уехало – 40 автобусов
Найдём сколько всего автобусов уехало на маршруты: 30 + 40 = 70 автобусов, тогда в парке осталось 78 – 70 = 8 автобусов.
Ответ: 8 автобусов.
1) Составь выражение и найди его значение:
К разности наибольшего двузначного числа и числа 77 прибавить наименьшее двузначное число.
2) Найди значение выражений 15 + a – 13 и b – 2 + 18 при a = 5, a = 10, a = 30 и b = 32, b = 43, b = 52.
1) Наибольшее двузначное число 99, а наименьшее – 10. Выражение выглядит так:
(99 – 77) + 10 = 22 + 10 = 32
2) Подставляем числовые значения вместо a и b:
15 + 5 – 13 = 20 – 13 = 7
15 + 10 – 13 = 25 – 13 = 12
15 + 30 – 13 = 45 – 13 = 32
32 – 2 + 18 = 30 + 18 = 48
43 – 2 + 18 = 41 + 18 = 59
52 – 2 + 18 = 50 + 18 = 68
Начерти и вырежи такие фигуры. Сложи из них квадрат.
Номер 21
Проверь, что эти примеры круговые.
Все примеры являются круговыми, т.к. значение получаемое в результате решения одного из примеров, является началом другого, а также ответ одного примера каждый раз совпадает с началом другого.
Источник