Как происходит переработка нефти и нефтепродуктов?
На сегодняшний день основным природным источником углеводородов является нефть. Первые нефтеперерабатывающие заводы строили именно в местах добычи, однако техническая модернизация средств перевозки стала причиной отделения нефтепереработки от нефтедобычи. Центры переработки нефти все чаще строятся вдали от мест добычи, в регионах массового потребления нефтепродуктов или вдоль нефтепроводов.
Процесс переработки нефти
Переработка нефти происходит в три главных этапа:
- на первом этапе нефтяное сырье разделяют на фракции, которые отличаются интервалами температур кипения (первичная переработка)
- далее осуществляется переработка полученных фракций при помощи химических превращений находящихся в них углеводородов с образованием компонентов товарных нефтепродуктов (вторичная переработка)
- на последнем этапе происходит смешивание компонентов с добавлением, если это необходимо, разных присадок, с образованием товарных нефтепродуктов с заданными показателями качества (товарное производство).
На нефтеперерабатывающих заводах производят моторные и котельные топлива, сжиженные газы, разные типы сырья для нефтехимических комбинатов, а также смазочные, гидравлические и прочие масла, битумы, нефтяные коксы, парафины. Исходя из того, какая применяется технология переработки нефти, на НПЗ производят от 5 до 40 позиций товарных нефтепродуктов. Нефтепереработка является непрерывным процессом, период деятельности производств между капитальными ремонтами в нынешних условиях достигает около 3-х лет.
Впервые нефть «переработали» в 1745 году в России
В сыром виде это природное ископаемое не используется. Для получения технически ценных продуктов (растворители, моторное топливо, компоненты для химических производств) осуществляется переработка нефти посредством первичных или вторичных методов. Попытки преобразовать это сырье предпринимались еще в середине восемнадцатого века, когда, помимо свечей и лучин, используемых населением, в лампадах ряда церквей использовали «гарное масло», которое представляло собой смесь растительного масла и очищенной нефти.
Как происходит процесс разделения нефти и воды?
После первичной очистки получают труднорастворимую эмульсию. Она представляет собой смесь, в которой частички одной жидкости равномерно распределяются во второй. На этом основании выделяют 2 типа эмульсий:
- гидрофильная. Представляет собой смесь, где частицы нефти находятся в воде;
- гидрофобная. Эмульсия в основном состоит из нефти, где находятся частички воды.
Процесс разрушения эмульсии может происходить механическим, электрическим или химическим способом. Первый метод подразумевает отстаивание жидкости. Это происходит при определенных условиях – подогрев до температуры 120-160 градусов, повышение давления до 8-15 атмосфер. Расслаивание смеси обычно происходит в течение 2-3 часов.
Чтобы процесс разделение эмульсии прошел удачно, необходимо не допускать испарение воды. Также выделение чистой нефти осуществляется при помощи мощных центрифуг. Эмульсия разделяется на фракции при достижении 3,5-50 тысяч оборотов в минуту.
Применение химического метода подразумевает применение специальных поверхностно-активных веществ, называемых деэмульгаторами. Они помогают растворить адсорбционную пленку, в результате чего нефть очищается от частиц воды. Химический метод зачастую применяется совместно с электрическим. Последний способ очистки подразумевает воздействие на эмульсию электрического тока. Он провоцирует объединение частиц воды. В результате он легче удаляются из смеси, что позволяет получить нефть высочайшего качества.
Варианты очистки нефти
Очистка часто не включается непосредственно в способы переработки нефти. Это, скорее, предварительный этап, который может состоять из:
— Химической очистки, когда на нефть воздействуют олеумом и концентрированной серной кислотой. При этом удаляются ароматические и непредельные углеводороды.
— Адсорбционной очистки. Здесь из нефтепродуктов могут удаляться смолы, кислоты за счет обработки горячим воздухом или пропуском нефти через адсорбент.
— Каталитической очистки – мягкой гидрогенизации для удаления азотистых и серных соединений.
— Физико-химической очистки. В этом случае посредством растворителей избирательно выделяются лишние составляющие. Например, полярный растворитель фенол используется для удаления азотистых и сернистых соединений, а неполярные растворители – бутан и пропан — выделяют гудроны, ароматические углеводороды и пр.
Первичная переработка
Добыча и переработка нефти происходит в несколько этапов. Особенностью производства различных продуктов из природного сырья считается то, что даже после качественной очистки полученный продукт не подлежит применению по прямому назначению.
Исходный материал характеризуется содержанием различных углеводородов, которые существенно отличаются молекулярным весом и температурой кипения. В его составе присутствуют вещества нафтеновой, ароматической, парафиновой природы. Также в исходном сырье содержатся сернистые, азотистые и кислородные соединения органического типа, которые также должны быть удалены.
Все существующие способы переработки нефти направлены на ее разделение на группы. В процессе производства получают широкий спектр продукции с разными характеристиками.
Первичная переработка природного сырья осуществляется на основании разных температур кипения ее составляющих частей. Для осуществления данного процесса привлекаются специализированные установки, которые позволяют получить различные нефтепродукты – от мазута до гудрона.
Если перерабатывать природное сырье таким способом, не удастся получить материал, готовый к дальнейшему использованию. Первичная перегонка направлена лишь на определение физико-химических свойств нефти. После ее проведения можно определить необходимость осуществления дальнейшей переработки. Также устанавливают тип оборудования, которое необходимо привлечь для выполнения нужных процессов.
Первичная переработка нефти
Способы перегонки нефти
Выделяют следующие методы переработки нефти (перегонки):
- однократное испарение;
- многократное испарение;
- перегонка с постепенным испарением.
Метод однократного испарения подразумевает переработку нефти при воздействии высокой температуры с заданным значением. В результате образуются пары, которые поступают в специальный аппарат. Его называют испарителем. В данном устройстве цилиндрической формы пары отделяются от жидкостной фракции.
При многократном испарении сырье подвергают обработке, при которой несколько раз осуществляют повышение температуры по заданному алгоритму. Последний способ перегонки является более сложным. Переработка нефти с постепенным испарением подразумевает плавное изменение основных рабочих параметров.
Оборудование для перегонки
Промышленная переработка нефти осуществляется при помощи нескольких аппаратов.
Трубчатые печи. В свою очередь их также разделяют на несколько видов. Это атмосферные, вакуумные, атмосферно-вакуумные печи. При помощи оборудования первого типа осуществляется неглубокая переработка нефтепродуктов, что позволяет получить мазут, бензиновые, керосиновые и дизельные фракции. В вакуумных печах в результате более эффективной работы сырье разделяют на:
- гудрон;
- масляные частицы;
- газойлевые частицы.
Полученные продукты полностью подходят для производства кокса, битума, смазочных материалов.
Ректификационные колонны. Процесс переработки нефтяного сырья при помощи данного оборудования подразумевает ее нагревание в змеевике до температуры 320 градусов. После этого смесь поступает в промежуточные уровни ректификационной колонны. В среднем она имеет 30-60 желобов, каждый из которых размещен с определенным интервалом и оснащен ванной с жидкостью. Благодаря этому пары стекают вниз в виде капель, поскольку образуется конденсат.
Существует также переработка с помощью теплообменных аппаратов.
Без химических изменений..
Переработка нефти посредством первичных процессов не предполагает химических превращений исходного сырья. Здесь полезное ископаемое просто разделяется на составляющие компоненты. Первое устройство по перегонке нефти было придумано в 1823 году, в Российской империи. Братья Дубинины догадались поставить котел в печь с нагревом, откуда шла труба через бочку с холодной водой в пустую емкость. В печном котле нефть нагревалась, проходила через «холодильник» и осаждалась.
Вторичные процессы
Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.
По своим направлениям, все вторичные процессы можно разделить на три вида:
- Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д.
- Облагораживающие: риформинг, гидроочистка, изомеризация и т. д.
- Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.
Риформинг
Каталитический риформинг — каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85—180 °С. В результате риформинга бензиновая фракция обогащается ароматическими соединениями, и октановое число бензина повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения индивидуальных ароматических углеводородов, таких как бензол, толуол и ксилолы.
Гидроочистка
Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Наиболее распространённый процесс нефтепереработки.
Каталитический крекинг
Каталитический крекинг — процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.
Гидрокрекинг
Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит водородсодержащий газ, образующийся при риформинге бензиновых фракций. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).
Коксование
Коксование — процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.
Изомеризация
Процесс получения изоуглеводородов (изобутан, изопентан, изогексан, изогептан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изоп из изопентана, МТБЭ и изобутилен из изобутана) и высокооктановых компонентов автомобильных бензинов.
Алкилирование
Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.
Другие методики переработки
Переработка природного сырья после первичной перегонки может осуществляться и другими способами.
Алкилирование. После переработки подготовленных материалов получают высококачественные компоненты для бензина. Метод основан на химическом взаимодействии олефиновых и парафиновых углеводородов, в результате чего получают высококипящий парафиновый углеводород.
Изомеризация. Применение данного метода позволяет получить из низкооктановых парафиновых углеводородов вещество с более высоким октановым числом.
Полимеризация. Позволяет осуществить превращение бутиленов и пропилена в олигомерные соединения. В результате получают материалы для производства бензинов и для проведения различных нефтехимических процессов.
Коксование. Применяется для производства нефтяного кокса из тяжелых фракций, получаемых после перегонки нефти.
Нефтеперерабатывающая отрасль относится к перспективным и развивающимся. Производственный процесс все время усовершенствуется за счет введения нового оборудования и методик.
Видео: Переработка нефти
Продукты переработки нефти
Всем известно, что нефть — это ценнейшее сырье является для производства топлива для различных средств передвижения, к примеру, бензин и дизельное топливо для автомобилей, авиационный керосин для реактивных двигателей самолетов. Топливо — это главный продукт переработки нефти. Однако одним топливом переработка нефти не заканчивается. Сегодня из нефти производят огромное количество других полезных компонентов, применяемых в совершенно неожиданных вещах. Подобные продукты переработки нефти мы используем в нашей повседневной жизни, но не подозреваем об их происхождении.
Самым востребованным на сегодняшний день можно назвать полиэтилен или пластик. Миллионами тонн полиэтиленовый пластик расходуется для создания пластиковых мешков, пищевых контейнеров и прочих товаров массового использования.
Наверно все люди когда-либо использовали вазелин. Его изобрел английский химик Роберт Чезбро, который был крайне любопытен и наблюдателен, вследствие чего сумел разглядеть полезные качества этого вещества в остатках переработки нефти еще в конце 19 века. Сегодня вазелин применяется в медицине, в косметологии и даже как пищевая добавка.
Косметикой и в частности губной помадой женщины пользуются не одно тысячелетие. Раньше губная помада содержала различные вредные компоненты. Однако сегодня она обладает рядом полезных качеств, а в ее состав входят углеводороды: жидкий и твердый парафин, церезин.
Еще одним популярнейшим продуктом, в составе которого присутствуют углеводороды, является жевательная резинка. В ее основе лежат не только природные компоненты, но и полиэтиленовые и парафиновые смолы. Вследствие того, что жвачка состоит из полученных нефтепереработкой полимеров, она разлагается крайне долго. По этой причине не нужно бросать жвачку на улице, так как она будет лежать в земле много много лет.
Пожалуй, самый уникальный материал, получаемый из нефти – это нейлон. Современную жизнь сложно представить без нейлоновых колготок. Нейлон — очень крепкий и легкий материал. Одними колготками его использование не заканчивается. Из него изготавливают средства для мытья посуды и парашюты. Изобрели этот полимер в 1935 году специалисты компании DuPont.
Источник
Процессы переработки нефти
Методы переработки нефти делятся на первичные и вторичные. Рассмотрим первичные методы при поступлении нефти на нефтеперерабатывающий завод (НПЗ).
Схема НПЗ
Предварительная подготовка нефти
Поступающая на НПЗ нефть очищается от механических примесей, легких газов, а также обессоливается и обезвоживается на установках ЭЛОУ.
Ректификация
Предварительно подготовленная сырая нефть разделяется на группы углеводородов (фракции) при помощи процессов первичной переработки – атмосферной перегонки и вакуумной дистилляции.
Сам процесс переработки представляет собой испарение сырой нефти и отгон полученных фракций за счёт разности температур закипания. Такой процесс называется прямой перегонки или ректификацией.
Атмосферная перегонка – происходит в ректификационной колонне при атмосферном давлении. В результате которой получают бензиновую, керосиновую, дизельную фракции и мазут.
Вакуумная дистилляция – разделение мазута, оставшегося от атмосферной перегонки, до гудрона с получением либо широкой дистиллятной фракции (топливный вариант), либо узких масляных фракций (маслянный вариант).
Таким образом, результатом первичной переработки нефти являются нефтепродукты и полупродукты для дальнейшей переработки вторичными методами с улучшением их товарного качества.
Процессы вторичной переработки нефти
Методы вторичной переработки нефти можно разделить на термические и каталитические.
Методы вторичной переработки нефти
Методы, используемые для вторичной переработки нефти можно разделить на термические и каталитические процессы.
Висбрекинг
Висбрекинг – процесс выработки из гудрона и подобных ему остаточных продуктов нефтепереработки котельного топлива с улучшенными эксплуатационными свойствами, характеризующимися пониженными уровнем вязкости и показателем температуры застывания.
При термическом крекинге происходит выработка дополнительного объема светлого сырья, также при использовании этого процесса обработки возможно получение нефтепродуктов, используемых на оборудовании, применяемом для производства электродного кокса и сырья, на основе которого получают технический углерод. Объем получаемого светлого нефтепродукта при этом достаточно низок и требует дальнейшей обработки.
Во время термического крекинга неизбежно образуется остаточное вещество – кокс, который принято считать вредным побочным продуктом, из-за чего дальнейшее углубление процесса переработки становится невозможным. Вместе с тем, в ряде случаев коксование (термическая обработка для выработки кокса с целью его дальнейшего использования) применимо в нефтяной промышленности, что позволяет в значительной мере увеличить объем получаемых светлых дистиллятов.
В последние годы процесс замедленного коксования (метод, при котором кокс вырабатывается в необогреваемых камерах) приобретает все большую популярность. Применение бензиновых фракций, содержащих большое количество серы и непредельных углеводородов, в товарных бензинах осложняется необходимостью дополнительного облагораживания. В качестве компонента дизтоплива допустимо использование легкого газойля, но его возможно применять только после гидроочистки.
Пиролиз
Самым жестким из всех термических процессов нефтепереработки является пиролиз. Пиролизные установки применяются для получения пропилена, этилена и других углеводородных газов, для которых характерно высокое содержание непредельных углеводородов. Благодаря выделению жидких продуктов при пиролизе возможна выработка ароматических углеводородов.
Чтобы избежать перемещение газов на дальние расстояния, пиролизные установки принято размещать непосредственно на территории химзаводов, но есть исключения, например, Кстовский НПЗ в Волгограде.
Каталитический крекинг
Глубокая нефтепереработка стала возможной после изобретения каталитического крекинга, что делает его одним из самых важных процессов нефтяной промышленности. Введение в эксплуатацию этого вида термической обработки стало возможным после получения эффективных катализаторов с длительным сроком эксплуатации.
Основное преимущество каталитического крекинга заключается в возможности применения при переработке фактически любых нефтяных фракций, при этом конечный продукт отличает высокое качество. Также стоит отметить его легкую сочетаемость с иными процессами, такими как гидроочистка, алкилирование и т.д. Благодаря своей универсальности этот процесс весьма распространен в промышленности.
Алкилирование
Метод селективной каталитической полимеризации, называемой олигомеризацией, и алкилирования, при котором применяют пропан-пропиленовую и бутан-бутиленовую фракции, выделенные в процессе разделения непредельных газов, делает возможным получение высокооктановых компонентов бензина.
Самым распространенным является процесс алкилирования изобутана олефинами при воздействии серной или фтористоводородной кислот. Стоит отметить, что применение метода алкилирования на практике ограниченно сложностью выведения изобутана: в значительном количестве он содержится только в газах, получаемых в ходе каталитического крекинга и гидрокрекинга, либо может быть выделен из попутного газа.
Олефины содержатся в газах, получаемых при каталитическом, термическом крекинге и коксовании. Выход легкого алкилата с октановым числом 92-95, являющегося целевым продуктом метода, достигает до 200-220% от объема олефинов, содержащихся в сырье.
Каталитический риформинг
Выполняемый с целью увеличения уровня детонационной стойкости бензинов, а также производства ароматических углеводородов процесс называется каталитическим риформингом. Этот процесс также позволяет получить широко используемый в ходе гидроочистки нефтяных дистиллятов водородсодержащий газ.
Сырье для переработки путем риформинга – прямогонный бензин с октановым числом 80-85 единиц. Данный метод нефтепереработки позволяет вывести 78-82% конечного продукта. Вместе с тем, получаемый таким способом базовый бензин содержит достаточно высокий процент ароматических углеводородов (50-65%), в том числе до 7% бензола, что в значительной степени увеличивает уровень образования нагара и способствует увеличению уровня выбросов в атмосферу канцерогенных веществ, а также содержит недостаточное количество легких фракций.
Для получения бензина, соответствующего утвержденным стандартам, используют легкие изопарафины, которые выводят из парафинов нормального строения с помощью каталитической изомеризации в водородсодержащей среде.
В виде компонента товарного бензина на нефтеперерабатывающих заводах в процессе выработки сырья риформинга остается наиболее легкая часть прямого бензина, так называемая головка. При этом для основной доли перерабатываемой нефти характерно наличие головной фракции с низким октановым числом. Повышение октанового числа легкой фракции на 15-20 единиц возможно путем ее изомеризации, что позволяет использовать ее в качестве компонента товарного бензина.
Гидрокрекинг
Гидрокрекингом называют процесс переработки мазута, вакуумного газойля или деасфальтизата под давлением водорода, предназначенный для получения любых видов светлых нефтепродуктов, в том числе автомобильного бензина, дизельного топлива, сжиженных газов и других видов светлых нефтепродуктов. Вид конечного продукта зависит от настроек и объема используемого водорода.
Гидрокрекинг применяют и для выработки легкокипящих углеводородов. В этом случаем сырьевым материалом выступают среднедистиллятные фракции и тяжелый бензин.
С помощью процесса гидрокрекинга возможна выработка только продуктов разложения, реакции уплотнения при этом методе обработки нефтепродукта подавляются из-за воздействия водорода.
Предприятия, специализирующиеся на производстве топливно-масляной продукции, получают дистиллятные фракции посредством выделения из фракций вакуумного газойля, остаточные масляные фракции – из диасфальтизата гудрона. Обычно при производстве масел используют экстракционные процессы. При этом условия, необходимые для успешного протекания процессов переработки, различны, что обусловлено различием химического состава конечного продукта, получаемого из нефтей разного происхождения.
Для нормального функционирования сегодня нефтеперерабатывающие заводы должны отвечать следующим требованиям:
– иметь возможность производства достаточного объема конечного продукта, чтобы полностью покрывать потребности региона;
– производить продукцию, отвечающую современным высоким стандартам качества;
– стремиться к налаживанию безостановочного процесса нефтепереработки;
– осуществлять комплексное производство продукции нефтегазовой отрасли;
– удерживать высокий уровень конкурентоспособности;
– отвечать всем нормам технологической и экологической безопасности производства.
Источник
Простая перегонка
Нефть состоит из множества компонентов — фракций, — свойства, область применения и технологии переработки которых различны. Первичные процессы нефтеперерабатывающего производства позволяют выделить отдельные фракции,
подготовив тем самым сырье для дальнейшего получения всем нам хорошо знакомых товарных продуктов — бензина, дизеля, керосина и многих других
Стабильность прежде всего
Прежде чем попасть на производство, нефть еще на промысле проходит первоначальную подготовку. При помощи газонефтяных сепараторов из нее удаляют наиболее легкие, газообразные составляющие. Это
попутный нефтяной газ (ПНГ), состоящий преимущественно из метана, этана, пропана, бутана и изобутана, то есть из углеводородов, в молекулах которых содержится от одного до четырех атомов углерода
(от CH4 до C4H10). Этот процесс называется стабилизацией нефти — подразумевается, что после него нефть будет сохранять свой углеводородный состав и основные физико-химические свойства
при транспортировке и хранении.
Объективно говоря, разгазирование пластовой нефти начинается еще в скважине по мере продвижения ее наверх: из-за падения давления в жидкости газ из нее постепенно выделяется. Таким образом,
наверху приходится иметь дело уже с двухфазным потоком — нефть / попутный газ. Их совместное хранение и транспортировка оказываются экономически невыгодными и затруднительными с технологической точки зрения.
Чтобы переместить двухфазный поток по трубопроводу, необходимо создать в нем условия постоянного перемешивания, чтобы газ не отделялся от нефти и не создавал в трубе газовые пробки. Все
это требует дополнительных затрат. Намного проще оказывается пропустить газонефтяной поток через сепаратор и максимально отделить от нефти ПНГ. Получить абсолютно стабильную нефть,
составляющие которой совсем не будут испаряться в атмосферу, практически невозможно. Некоторое количество газа все равно останется и будет извлечено в процессе нефтепереработки.
Кстати, сам попутный нефтяной газ — это ценное сырье, которое может использоваться для получения электроэнергии и тепла, а также в качестве сырья для нефтехимических производств. На газоперерабатывающих заводах из ПНГ получают технически чистые отдельные углеводороды и их смеси, сжиженные газы, серу.
Из истории дистилляции
Дистилляция, или перегонка, — процесс разделения жидкостей путем их испарения и последующей конденсации. Считается, что впервые этот процесс освоили в Древнем Египте, где он применялся при
получении из кедровой смолы масла для бальзамирования тел умерших. Позднее смолокурением для получения кедрового масла занимались и римляне. Для этого горшок со смолой
ставили на огонь и накрывали шерстяной материей, на которой собиралось масло.
Аристотель описал процесс дистилляции в своей работе «Метеорология», а также упоминал вино, пары которого могу вспыхнуть — косвенно подтверждение того, что его предварительно могли
подвергнуть перегонке, чтобы повысить крепость. Из других источников известно, что вино перегоняли в III веке до н. э. в Древнем Риме, правда, не для получения бренди, а для
изготовления краски.
Следующие упоминания дистилляции относятся к I веку н. э. и связаны с работами александрийских алхимиков. Позднее этот метод у греков переняли арабы, которые активно использовали его в своих опытах.
Также достоверно известно, что дистилляцией алкоголя в XII веке занимались в Салернской врачебной школе. В те времена, впрочем, дистилляты спирта употреблялись не как напиток, а в качестве
лекарства. В XIII веке флорентийский медик Тадео Альдеротти впервые осуществил фракционирование (разделение) смеси жидкостей. Первая книга, целиком и полностью посвященная вопросам дистилляции,
была опубликована в 1500 году немецким врачом Иеронимом Бруншвигом.
Долгое время для перегонки применялись достаточно простые устройства — аламбик (медный сосуд с трубкой для отвода пара) и реторта (стеклянная кол-ба с узким и длинным наклонным
носиком). Техника стала совершенствоваться в XV веке. Однако предшественники современных ректификационных колонн для перегонки нефти, в которых происходит теплообмен между противонаправленными потоками жидкости
и пара, появились лишь в середине XIX века. Они позволили получать спирт крепостью 96% с высокой степенью очистки.
Также на месторождении от нефти отделяют воду и механические примеси. После этого она поступает в магистральный нефтепровод и отправляется на нефтеперерабатывающий завод (НПЗ). Прежде чем приступить к переработке,
нефть необходимо очистить от содержащихся в ней солей (хлоридов и сульфатов натрия, кальция и магния), которые вызывают коррозию оборудования, оседают на стенках труб, загрязняют насосы
и клапаны. Для этого используются электрообессоливающие установки (ЭЛОУ). Нефть смешивают с водой, в результате чего возникает эмульсия — микроскопические капельки воды в нефти, в которых растворяется
соль. Получившуюся смесь подвергают воздействию электрического поля, из-за чего капли соленой воды сливаются друг с другом и затем отделяются от нефти.
Нефть представляет собой сложную смесь углеводородов и неуглеводородных соединений. С помощью первичной перегонки ее можно разделить только на части — дистилляты, содержащие менее сложную смесь. из-за сложного состава нефтяные фракции выкипают в определенных температурных интервалах.
Фракционный состав
Многие процессы на НПЗ требуют подогрева нефти или нефтепродуктов. Для этого используются трубчатые печи. Нагрев сырья до требуемой температуры происходит в змеевиках из труб диаметром 100–200 мм.
Нефть состоит из большого количества разных углеводородов. Их молекулы различаются массой, которая, в свою
очередь, определяется количеством составляющих их атомов углерода и водорода. Чтобы получить тот или иной нефтепродукт, нужны вещества с совершенно определенными характеристиками, поэтому переработка
нефти на НПЗ начинается с ее разделения на фракции.
Согласно исследованию нефтеперерабатывающих и нефтехимических производств, проведенному Американским нефтяным институтом, номенклатура нефтепродуктов, выпускаемых на современных НПЗ и имеющих индивидуальные спецификации, насчитывает более 2000 пунктов.
В одной фракции нефти могут содержаться молекулы разных углеводородов, но свойства большей части из них близки, а молекулярная масса варьируется в определенных пределах. Разделение фракций происходит
путем перегонки нефти (дистилляции), основанной на том, что у разных углеводородов температура кипения различается: у более легких она ниже, у более тяжелых — выше.
Основные фракции нефти определяют по интервалам температур, при которой кипят входящие в них углеводороды: бензиновая фракция — 28—150°C, керосиновая фракция — 150—250°C, дизельная фракция, или
газойль, — 250—360°C, мазут — выше 360°C. Например, при температуре 120°C большая часть бензина уже испарилась, но керосин и дизельное топливо находятся в жидком состоянии. Когда
температура поднимается до 150°C, начинает кипеть и испаряться керосин, после 250°C — дизель.
Источник
Технология переработки нефти
Нефть, полученная из скважины, представляет не большую ценность, ведь чтобы получить тот же бензин или керосин, ей придется пройти сложный и длительный процесс очистки и обработки.
Подготовка к переработке
Полученное из нефтяных месторождений сырье нельзя сразу отправлять на переработку, т. к. в нем слишком много различных примесей: воды, соли, газа и т. д. Например, если не очистить нефть от соли, трубы, по которым она будет доставляться, быстро покроются коррозией, что приведет к закупориванию теплообменной аппаратуры. Поэтому на первом этапе нефть всегда очищается от посторонних примесей:
- Нефть проходит процесс сепарации, т. е. отделение газа от нефти в специальных установках.
- Далее в аппаратах-отстойниках из полученной жидкости удаляется вода.
- Очистка сырой нефти от соли может производиться как с помощью специальных установок комплексной подготовки нефти, так и непосредственно на нефтеперерабатывающем заводе.
Этапы подготовки нефти к переработке
Нефть, прошедшую эти этапы очистки, называют стабильной. Именно она транспортируется на нефтеперерабатывающие заводы для дальнейшей переработки.
Первый в мире завод по переработке нефти был построен именно в России на реке Ухта в 1745 году братьями Чумеловыми. Завод производил керосин и смазочные масла.
Первичная переработка сырой нефти
На первой стадии переработки сырая нефть разделяется на узкие фракции при помощи высокотемпературной атмосферной или атмосферно-вакуумной перегонки. Этот процесс производится в специальных установках — колоннах. В зависимости от температуры нагрева, из нефти может получаться различная продукция:
- Бензин (температура выкипания 150–180 градусов ). Низкооктановый бензин полностью готов уже на стадии первичной переработки. Высокооктановый бензин получают после вторичной переработки.
- Керосин (температура выкипания 120–315 градусов). Применяется в реактивных и тракторных двигателях, осветительных приборах и в качестве сырья для установок гидроочистки.
- Дизельное топливо (температура выкипания 180–360 градусов). Используется в качестве топлива или сырья для установок гидроочистки при вторичной переработке.
- Мазут (температура кипения более 350 градусов). Используется в качестве топлива для котельных или сырья для гидроочистки и термического крекинга при вторичной переработке.
- Вакуумные дистилляты (температура выкипания порядка 350–500 градусов). Применяются в качестве сырья для каталитического крекинга и гидрокрекинга при вторичной очистке.
- Гудрон (температура выкипания более 500 градусов). Применяется при производстве битумов и масел, а также в качестве сырья для крекинга при вторичной переработке.
Первичная обработка нефти в ректификационной колонне
Если посмотреть на статистику первичной переработки нефти в России , можно увидеть, что пока перерабатывающая промышленность не может выйти на рекордные показатели, зафиксированные еще во времена СССР, но при этом количество ежегодно перерабатываемого сырья постоянно растет. В 1990 году первичной переработке подверглось 300 млн тонн сырой нефти. В течение 90-х годов эти показатели постоянно падали, а непрерывный рост начался лишь с 2001 года. В 2014 году был зафиксирован пока рекордный показатель в истории современной России — 294 млн тонн.
Правда, без ввода в эксплуатацию новых перерабатывающих установок на значительный рост первичной переработки в дальнейшем надеяться не стоит. Если в 1990 загрузка перерабатывающих мощностей была на уровне 85%, то в 2014 году перерабатывающие установки работали почти на максимуме — 95% загрузки.
Вторичная переработка нефти
К методам вторичной переработки относятся.
Крекинг
Процесс расщепления углеводородов с длинной цепью на углеводороды с меньшей молекулярной массой. Он подразделяется на два вида:
- Термический — происходит путем нагревания нефтяного сырья.
- Каталитический — происходит путем воздействия на сырье высокой температуры и специальных катализаторов.
Каталитический и термический крекинг
Продуктами крекинга являются : бензин, котельное и моторное топливо, масла, кокс, газойли, этилен и ацетилен.
Риформинг
В отличие от крекинга, молекулы углеводорода при риформинге не расщепляются, а преобразуются. Сам процесс производится в специальных нагревательных печах с несколькими реакторами при температуре 350–5200 градусов. Через реакторы печи пропускается водород, а сырая нефть проходит через них в реакционную камеру, в которой находятся катализаторы (иридий, германий, рений, различные вещества, содержащие платину), которые приводят к химической реакции. Из этой камеры нефть попадает в специальную колонну, где и разделяется на готовые продукты.
В результате риформинга получается высокооктановый автомобильный и авиационный бензин, сухой газ, а также водород.
Коксование
В этом случае тяжелые фракции нефти, получаемые в результате атмосферной и вакуумной перегонки, нагреваются в реакторе без доступа кислорода, в результате чего и получается кокс.
Пиролиз
В результате этого процесса нефтяные фракции нагреваются в газогенераторах или ретортных печах. Полученный газ и газовые смолы перерабатываются для получения бензола, нафталина, толуола. При дальнейшей переработке из полученного в результате пиролиза газа производят синтетический каучук и спирт.
Гидрогенизационные процессы
Это переработка нефтяных высококипящих фракций путем воздействия водорода при помощи высоких температур (250–420 градусов), давления (2,5–32 МПа) и различных катализаторов.
Все гидрогенизационные процессы можно разделить на три вида в зависимости от изменяющихся в результате молекул:
- Гидроочистка: изменений в молекулярной структуре сырья практически не происходит.
- Гидрооблагораживание: изменяется около 10% молекулярной структуры сырья.
- Гидрокрекинг: изменяется молекулярная структура более 50% сырья.
Очень важным показателем эффективности переработки сырья является ГНП (глубина переработки нефти). Она показывает, сколько нефтепродуктов в процентном соотношении получается из нефти, не считая непревращенного остатка. В США этот показатель в среднем составляет 90%, а на некоторых предприятиях может доходить до 98%. В России средний показатель ГНП составляет 72%.
Такая разница обусловлена двумя причинами:
- высокой потребностью РФ в мазуте, который традиционно не учитывается при подсчете ГНП;
- высоким уровнем нефтеперерабатывающих технологий в США .
Впрочем, показатель ГНП в российской перерабатывающей промышленности постоянно растет, так в 1990 году он составлял всего лишь 65%.
Основные показатели нефтеперерабатывающей промышленности в России | |||||||
---|---|---|---|---|---|---|---|
Год | Мощности по сырью, млн т | Первичная переработка, млн т | Загрузка установок по первичной переработке нефти, % | Производство основных нефтепродуктов, млн т | Глубина переработки нефти, % | ||
автомобильный бензин | дизельное топливо | мазут | |||||
1990 | 351 | 300 | 85 | 41 | 75,6 | 95 | 67,0 |
1995 | 304 | 185 | 61 | 28 | 43 | 60 | 63,0 |
2000 | 281 | 174 | 62 | 27,2 | 49,3 | 48,4 | 70,8 |
2001 | 281 | 178 | 63 | 27,6 | 50,1 | 50,3 | 70,6 |
2002 | 276 | 185 | 67 | 29 | 52,7 | 54,2 | 69,6 |
2003 | 271 | 190 | 70 | 29,3 | 53,8 | 57,2 | 70,1 |
2004 | 271 | 195 | 72 | 30,4 | 55,3 | 58,4 | 71,4 |
2005 | 264 | 207 | 79 | 31,9 | 59,9 | 56,7 | 71,6 |
2006 | 273 | 220 | 81 | 34,4 | 64,2 | 59,4 | 72,0 |
2007 | 279 | 229 | 82 | 35,1 | 66,4 | 62,4 | 71,9 |
2008 | 272 | 236 | 87 | 35,7 | 69 | 63,9 | 71,5 |
2009 | 267 | 236 | 88 | 35,8 | 67,3 | 64,4 | 71,8 |
2010 | 271 | 250 | 92 | 36 | 69,9 | 69,5 | 71,2 |
2011 | 282 | 256 | 91 | 36,6 | 70,6 | 73,3 | 70,8 |
2012 | 279 | 266 | 95 | 38,2 | 69,7 | 74,5 | 71,5 |
Нетрадиционные способы использования нефти
Товары, производящиеся из нефтесодержащей продукции, используются практически во всех сферах жизнедеятельности человека. Это не только топливо, смазочные материалы, нефтехимическое сырье и растворители.
Одежда
Постепенно все большую популярность набирает одежда из синтетических материалов. Один из наиболее распространенных из них — полиэстер, получается из нескольких форм нефтепродуктов. Главными преимуществами одежды из полиэстера являются несминаемость и долговечность. Еще один популярный материал, получаемый из нефтепродуктов — нейлон. Из него производят практически любую одежду: от брюк и курток до женских колготок.
Лекарства
Из фенола, получаемого из нефти, производят ацетилсалициловую кислоту (аспирин), которая весьма популярна в мире. Полученные в результате переработки нефти этилы и спирт используются при производстве антибиотиков. Из еще одного продукта переработки нефти — нитробензола, получают анилигин, применяющийся при создании антимикробных препаратов.
Благодаря содержащимся в нефти углеводородам, можно производить молочную продукцию, колбасу, мясо и другие биогенные продукты. По подсчетам из 2% ежегодно добываемой в мире нефти можно произвести 2 млн тонн белка. Этого вполне достаточно для того, чтобы прокормить 2 млрд человек, что вполне могло бы решить проблему нехватки продовольствия на Земле, о которой все чаще твердят ученные в последнее время.
Существует миф, что из белка, созданного на основе нефти, производят икру. Он появился в 60-е годы XX века, когда в СССР только пробовали производить синтетическую икру, получаемую из бактерий, питательной средой которых служили нефтесодержащие растворы.
Косметика и парфюмерия
Продукты нефтехимии широко используются при производстве красителей, лаков, парфюмов, косметических карандашей, губной помады и теней для век.
Описанные выше процессы переработки нефти наиболее актуальны в данный момент. Но мир не стоит на месте, в последние годы создано немало технологий, которые могут в корне изменить процесс переработки нефтепродуктов и технологию их использования.
Так, китайские ученые разработали методику получения дизельного топлива из отработанного машинного масла, которая гораздо проще и дешевле производства дизельного топлива из нефти. В России уже давно ведется работа над технологией очистки светлых фракций нефти в одну стадию (без применения риформинга, гидроочистки и других сложных и затратных процессов) при помощи специального катализатора, что позволит снизить расходы на переработку в четыре раза.
Кто знает, какие еще открытия в сфере нефтепереработки могут произойти уже в самом ближайшем будущем.
Источник